extremal submanifold - определение. Что такое extremal submanifold
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое extremal submanifold - определение

Extremal graph
  • The edges between parts in a regular partition behave in a "random-like" fashion.
  • The [[Petersen graph]] has chromatic number 3.
  • cliques]]. This is ''T''(13,4).

Epoch of Extreme Inundations         
HYPOTHETICAL EPOCH
User:Andreygeo/Epoch of Extremal Inundations; Epoch of Extremal Inundations
The Epoch of Extreme Inundations (EEI) is a hypothetical epoch during which four landforms in the Pontic–Caspian steppe—marine lowlands (marine transgressions), river valleys (outburst floods), marine transgressions (thermocarst lakes) and slopes (solifluction flows)—were widely inundated.The dynamics of landscape components and inner marine basins of Northern Eurasia over the past 130,000 years.
Extremal combinatorics         
STUDY OF MAXIMUM OR MINIMUM SIZE OF A SET UNDER GIVEN CONDITIONS
Extremal set theory
Extremal combinatorics is a field of combinatorics, which is itself a part of mathematics. Extremal combinatorics studies how large or how small a collection of finite objects (numbers, graphs, vectors, sets, etc.
Extremal graph theory         
Extremal graph theory is a branch of combinatorics, itself an area of mathematics, that lies at the intersection of extremal combinatorics and graph theory. In essence, extremal graph theory studies how global properties of a graph influence local substructure.

Википедия

Extremal graph theory

Extremal graph theory is a branch of combinatorics, itself an area of mathematics, that lies at the intersection of extremal combinatorics and graph theory. In essence, extremal graph theory studies how global properties of a graph influence local substructure. Results in extremal graph theory deal with quantitative connections between various graph properties, both global (such as the number of vertices and edges) and local (such as the existence of specific subgraphs), and problems in extremal graph theory can often be formulated as optimization problems: how big or small a parameter of a graph can be, given some constraints that the graph has to satisfy? A graph that is an optimal solution to such an optimization problem is called an extremal graph, and extremal graphs are important objects of study in extremal graph theory.

Extremal graph theory is closely related to fields such as Ramsey theory, spectral graph theory, computational complexity theory, and additive combinatorics, and frequently employs the probabilistic method.